AUG 2 3 2004 H

SEQUENCE LISTING

<110>	Schwartz, Margaret A. Zhang, Fangrong Gebb, Sarah A.	
<120>	METHODS OF FACILITATING VASCULAR GROWTH	
<130>	9022-8CT	
	US 09/928,796 2001-08-13	
	US 09/439,616 1999-11-12	
	US 60/108,435 1998-11-13	
<160>	15	
<170>	PatentIn version 3.2	
<210><211><212><213>	20	
<220> <223>	Oligonucleotide primer	
<400> gtcatg	1 gcca tggtcgagta	20
<210><211><211><212><213>	20	
<220> <223>	Oligonucleotide primer	
<400> ctcctc	2 ggca tcttgctgaa	20
<210><211><212><212><213>	19	
<220> <223>	Oligonucleotide primer	
<400> ttgaag	3 tgac gaatgagat	19
<210> <211>	4 19	

<212> <213>	Artificial Artificial	
<220> <223>	Oligonucleotide primer	
<400>	4	1.0
acctage	agct gtctggctt	19
<210>	5	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
<400>	5	21
catact	gaga tggtccttga g	21
<210>	6	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
<400>	6	
tctggag	geca tatteatgat g	21
<210>	7	
<211>		
<212>		
	Artificial	
<220>		
-	Oligonucleotide primer	
<400>	7	
gaacat	gaga gtacgaccac tgtcaaa	27
<210>	8	
<211>	27	
<212> <213>	Artificial	
	ALCITICIAL	
<220>		
<223>	Oligonucleotide primer	
<400>	8	27
ccayyy	cgag aaccttccag aaatctt	21
<210>	9	
<211>	21	
<212>	DNA	

<213	> Artificial	
<220		
<223		
\225	> origonatiootiae brimer	
<400	> 9	
	ggaatc ctgtggcatc c	21
-		
<210	> 10	
<211	> 21	
<212	> DNA	
<213	> Artificial	
<220		
<223	> Oligonucleotide primer	
<400		
tacg	cagete agtaacagte e	21
<210		
	> 21	
	> DNA > Artificial	
<213	> Artificial	
<220		
<223		
\223	> Oligonacicociae primer	
<400	> 11	
	ctgaga tggtccttga g	21
<210	> 12	
<211	> 21	
<212	> DNA	
<213	> Artificial	
<220		
<223	> Oligonucleotide primer	
<400		0.1
tctg	gagcca tcttcatgat g	21
<210	> 13	
<211		
<212		
<213		
1223	- 1.00 mapourab	
<220	>	
<221	> CDS	
<222		
<400	> 13	
gagg	ctgctc aagagctgcg gttgggtcac cgcttcatgt ttctctgccg attctgggga	60
	atg gca acg aat gat gct gtt ctg aag agg ctg gag cag aag ggt	108
	Met Ala Thr Asn Asp Ala Val Leu Lys Arg Leu Glu Gln Lys Gly	
	1 5 10 15	

-		_	-		atc Ile							 _		156
					att Ile									204
	_	_	_		gct Ala		_			_	_		_	252
					gca Ala									300
					cca Pro 85									348
					tca Ser									396
					gga Gly									444
					aag Lys									492
_		_			gac Asp	_	_	_	_	_	_		_	540
	-			-	aag Lys 165									588
					gaa Glu									636
					cta Leu									684
					cct Pro									732
					agt Ser									780
					cct Pro 245									828

.

gga gag cct gac aag gag cta aac cct aag aag aag atc tgg gag cag Gly Glu Pro Asp Lys Glu Leu Asn Pro Lys Lys Lys Ile Trp Glu Gln 260 265 270	876
atc cag cct gac ctg cac acc aat gct gag tgt gtg gcc aca tac aaa Ile Gln Pro Asp Leu His Thr Asn Ala Glu Cys Val Ala Thr Tyr Lys 275 280 285	924
gga gct ccc ttt gag gtg aag ggg aag gga gtt tgc aga gcc caa acc Gly Ala Pro Phe Glu Val Lys Gly Lys Gly Val Cys Arg Ala Gln Thr 290 295 300	972
atg gcc aat agt gga att aaa taagtgctct gtaactgaaa gacattggcg Met Ala Asn Ser Gly Ile Lys 305 310	1023
aaaacttaat aacaataaag agaagtgtgt ttatcactta catataaaaa aaaaaaaaa	1083
aaa	1086
<210> 14 <211> 310 <212> PRT <213> Mus musculus	
Met Ala Thr Asn Asp Ala Val Leu Lys Arg Leu Glu Gln Lys Gly Ala 1 5 10 15	
Glu Ala Asp Gln Ile Ile Glu Tyr Leu Lys Gln Gln Val Ala Leu Leu 20 25 30	
Lys Glu Lys Ala Ile Leu Gln Ala Thr Met Arg Glu Glu Lys Lys Leu 35 40 45	
Arg Val Glu Asn Ala Lys Leu Lys Lys Glu Ile Glu Glu Leu Lys Gln 50 55 60	
Glu Leu Ile Leu Ala Glu Ile His Asn Gly Val Glu Gln Val Arg Val 65 70 75 80	
Arg Leu Ser Thr Pro Leu Gln Thr Asn Cys Thr Ala Ser Glu Ser Val 85 90 95	
Val Gln Ser Pro Ser Val Ala Thr Thr Ala Ser Pro Ala Thr Lys Glu 100 105 110	
Gln Ile Lys Ala Gly Glu Glu Lys Lys Val Lys Glu Lys Thr Glu Lys 115 120 125	
Lys Gly Glu Lys Lys Glu Lys Gln Gln Ser Ala Ala Ala Ser Thr Asp	

130 135 140

Ser Lys Pro Ile Asp Ala Ser Arg Leu Asp Leu Arg Ile Gly Cys Ile 145 150 155 160

Val Thr Ala Lys Lys His Pro Asp Ala Asp Ser Leu Tyr Val Glu Glu 165 170 175

Val Asp Val Gly Glu Ala Ala Pro Arg Thr Val Val Ser Gly Leu Val 180 185 190

Asn His Val Pro Leu Glu Gln Met Gln Asn Arg Met Val Val Leu Leu 195 200 205

Cys Asn Leu Lys Pro Ala Lys Met Arg Gly Val Leu Ser Gln Ala Met 210 215 220

Val Met Cys Ala Ser Ser Pro Glu Lys Val Glu Ile Leu Ala Pro Pro 225 230 235 240

Asn Gly Ser Val Pro Gly Asp Arg Ile Thr Phe Asp Ala Phe Pro Gly 245 250 255

Glu Pro Asp Lys Glu Leu Asn Pro Lys Lys Lys Ile Trp Glu Gln Ile 260 265 270

Gln Pro Asp Leu His Thr Asn Ala Glu Cys Val Ala Thr Tyr Lys Gly
275 280 285

Ala Pro Phe Glu Val Lys Gly Lys Gly Val Cys Arg Ala Gln Thr Met 290 295 300

Ala Asn Ser Gly Ile Lys 305 310

<210> 15

<211> 312

<212> PRT

<213> Homo sapiens

<400> 15

Met Ala Asn Asn Asp Ala Val Leu Lys Arg Leu Glu Gln Lys Gly Ala 1 5 10 15

Glu Ala Asp Gln Ile Ile Glu Tyr Leu Lys Gln Gln Val Ser Leu Leu 20 25 30

гуѕ	GIU	цув 35	Ala	116	Leu	GIII	40	Inc	ьeu	Arg	GIU	45	гуѕ	гÀз	ьeu
Arg	Val 50	Glu	Asn	Ala	Lys	Leu 55	Lys	Lys	Glu	Ile	Glu 60	Glu	Leu	Lys	Gln
Glu 65	Leu	Ile	Gln	Ala	Glu 70	Ile	Gln	Asn	Gly	Val 75	Lys	Gln	Ile	Ala	Phe 80
Pro	Ser	Gly	Thr	Pro 85	Leu	His	Ala	Asn	Ser 90	Met	Val	Ser	Glu	Asn 95	Val
Ile	Gln	Ser	Thr 100	Ala	Val	Thr	Thr	Val 105	Ser	Ser	Gly	Thr	Lys 110	Glu	Gln
Ile	Lys	Gly 115	Gly	Thr	Gly	Asp	Glu 120	Lys	Lys	Ala	Lys	Glu 125	Lys	Ile	Glu
Lys	Lys 130	Gly	Glu	Lys	Lys	Glu 135	Lys	Lys	Gln	Gln	Ser 140	Ile	Ala	Gly	Ser
Ala 145	Asp	Ser	Lys	Pro	Ile 150	Asp	Val	Ser	Arg	Leu 155	Asp	Leu	Arg	Ile	Gly 160
Cys	Ile	Ile	Thr	Ala 165	Arg	Lys	His	Pro	Asp 170	Ala	Asp	Ser	Leu	Tyr 175	Val
Glu	Glu	Val	Asp 180	Val	Gly	Glu	Ile	Ala 185	Pro	Arg	Thr	Val	Val 190	Ser	Gly
Leu	Val	Asn 195	His	Val	Pro	Leu	Glu 200	Gln	Met	Gln	Asn	Arg 205	Met	Val	Ile
Leu	Leu 210	Cys	Asn	Leu	Lys	Pro 215	Ala	Lys	Met	Arg	Gly 220	Val	Leu	Ser	Gln
Ala 225	Met	Val	Met	Cys	Ala 230	Ser	Ser	Pro	Glu	Lys 235	Ile	Glu	Ile	Leu	Ala 240
Pro	Pro	Asn	Gly	Ser 245	Val	Pro	Gly	Asp	Arg 250	Ile	Thr	Phe	Asp	Ala 255	Phe
Pro	Gly	Glu	Pro 260	Asp	Lys	Glu	Leu	Asn 265	Pro	Lys	Lys	Lys	Ile 270	Trp	Glu

Gln Ile Gln Pro Asp Leu His Thr Asn Asp Glu Cys Val Ala Thr Tyr 275 280 285

Lys Gly Val Pro Phe Glu Val Lys Gly Lys Gly Val Cys Arg Ala Gln 290 295 300

Thr Met Ser Asn Ser Gly Ile Lys 305 310